Search results for "Aluminum Alloys"

showing 10 items of 25 documents

Fabrication of Billet from Aluminum Alloys AA 2011-T3/7075 Chips through Friction Stir Consolidation

2022

Recently evolving Solid-State Recycling (SSR) techniques have shown promising features to recycle metals scraps more efficiently compared to remelting-based approaches. Among these SSR methods, Friction Stir Consolidation (FSC) has been successfully tested to transform metals chips directly into semi or final solid products. Therefore, researchers explored FSC critical process parameters and their subsequent effects on quality in terms of the mechanical and metallurgical properties of the billet. All the previous studies of FSC were limited to developing billet of mono materials. Therefore, in this research, an attempt was made to go beyond the idea of recycling; in fact, a billet of two di…

Aluminum Alloys Friction Stir Consolidation Recycling Solid state TechniqueSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

On the improvement of material formability in SPIF operation through tool stirring action

2012

Single-point incremental forming (SPIF) is a quite new sheet-forming process which offers the possibility to deform complex parts without dedicated dies using a single-point tool and a standard three-axis CNC machine. The process mechanics enables higher strains with respect to traditional sheet-forming processes, but particular attention must be given to the maximum forming angle. In this paper, a new approach is proposed to enhance the material formability through a localized sheet heating as a consequence of the friction work caused by elevated tool rotational speeds. AA1050-O, AA1050-H24, and AA6082-T6 were utilized, and the reached temperatures were recorded by thermocouples, fixed to …

Work (thermodynamics)Materials scienceMechanical EngineeringIncremental formingAluminum alloysDRX MicrostructureProcess (computing)Mechanical engineeringRotational speedMicrostructureIndustrial and Manufacturing EngineeringAction (physics)Computer Science ApplicationsControl and Systems EngineeringThermocoupleNumerical controlFormabilitySoftware
researchProduct

Material flow analysis in dissimilar friction stir welding of AA2024 and Ti6Al4V butt joints

2016

The complex material flow occurring during the weld of dissimilar AA2024 to Ti6Al4V butt and lap joints was highlighted through a dedicated numerical model able to take into account the effects of the different materials as well as the phase transformation of the used titanium alloy.

aluminum alloysFEMMaterials scienceMetallurgyFriction Stir WeldingTitanium alloyWeldingFinite element methodlaw.inventionMaterial flowLap jointlcsh:TA1-2040lawtitanium alloysButt jointFriction stir weldingFriction weldingComposite materiallcsh:Engineering (General). Civil engineering (General)MATEC Web of Conferences
researchProduct

Effect of Hydrogen and Absence of Passive Layer on Corrosive Properties of Aluminum Alloys

2020

This paper reports the results of research on the effect of hydrogen permeation and the absence of passive layers on the variations in the corrosive properties of aluminum alloys. The study demonstrated that such variations contribute to the deterioration of corrosive properties, which in turn contributes to shortening the reliability time associated with the operation of aluminum alloy structures. The analysis involved structural aluminum alloys: EN AW-1050A, EN AW-5754, and EN AW-6060. It was demonstrated that the absorption of hydrogen by the analyzed alloys led to the shift of the electrode potential to the negative side. The built hydrogen corrosion cells demonstrate in each case the f…

Materials scienceHydrogenchemistry.chemical_element02 engineering and technology010402 general chemistryElectrochemistrylcsh:Technology01 natural sciencesArticleCorrosionGalvanic cellGeneral Materials ScienceComposite materiallcsh:Microscopylcsh:QC120-168.85Anaerobic corrosionaluminum alloyscorrosionreliabilityenvironmental engineeringlcsh:QH201-278.5Electromotive forcelcsh:Ttechnology industry and agriculturealuminum alloys; hydrogen; corrosion; reliability; environmental engineering021001 nanoscience & nanotechnologyequipment and supplies0104 chemical scienceschemistrylcsh:TA1-2040hydrogenElectrodelcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971Electrode potentialMaterials
researchProduct

Numerical investigation on dissimilar Friction Stir Welding of Aluminum and Magnesium sheets

2014

Mixed joints FEM Aluminum alloys Magnesium alloys.
researchProduct

Analytical bonding criteria for joint integrity prediction in friction stir welding of aluminum alloys

2014

Abstract In this study, two bonding criteria, previously used for porthole die extrusion, are applied to FSW starting from the local value of the main field variables calculated through a specifically developed 3D numerical model of the process. Their applicability and effectiveness have been assessed through an experimental and numerical campaign carried out with the main process parameters varying in a wide range. The pressure–time–flow criterion was demonstrated to be better suited for FSW processes when large welding speed is used.

business.product_categoryMaterials scienceMetallurgyMetals and AlloysProcess (computing)Mechanical engineeringWeldingIndustrial and Manufacturing EngineeringFinite element methodComputer Science Applicationslaw.inventionlawModeling and SimulationCeramics and CompositesRange (statistics)Die (manufacturing)Friction stir weldingExtrusionbusinessJoint (geology)Friction stir welding Aluminum alloys FEM Bonding criterionJournal of Materials Processing Technology
researchProduct

Aluminum to titanium laser welding-brazing in V-shaped grooveI

2017

International audience; Laser assisted joining of AA5754 aluminum alloy to T40 titanium with use of Al-Si filler wires was carried out. Continuous Yb:YAG laser beam was shaped into double spot tandem and defocalized to cover larger interaction zone in V shaped groove. Experimental design method was applied to study the influence of operational parameters on the tensile properties of the joints. Microstructure examination and fractography study were carried out to understand the relation between local phase content and fracture mode.Within defined window of operational parameters, statistically important factors that influenced the strength of T40 to AA5754 joints in V groove configuration w…

0209 industrial biotechnologyMatériaux [Sciences de l'ingénieur]Materials science[ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph][ SPI.MAT ] Engineering Sciences [physics]/MaterialsFractography02 engineering and technologyIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/Materials020901 industrial engineering & automationUltimate tensile strengthBrazingTitanium alloysJoint (geology)Groove (engineering)Filler metalMécanique [Sciences de l'ingénieur]MetallurgyMetals and AlloysLaser beam weldingTitanium alloy[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]021001 nanoscience & nanotechnologyAluminum alloysComputer Science ApplicationsModeling and SimulationCeramics and CompositesLaser weldingDissimilar metal joint0210 nano-technology
researchProduct

Experimental and numerical study on Linear Friction Welding of AA2011 Aluminum Alloy

2014

Linear Friction Welding Aluminum Alloys FEM.
researchProduct

Improving formability in SPIF processes through high speed rotating tool: experimental and numerical analysis

2013

Single-point incremental forming (SPIF) is a quite new sheet-forming process which offers the possibility to deform complex parts without dedicated dies using a single-point tool and a standard three-axis CNC machine. Although the process mechanics enables higher strains with respect to traditional sheet-forming processes, research has been focused on further increasing the maximum forming angle. In the paper, a new approach is used to enhance the material formability through a localized sheet heating as a consequence of the friction work caused by high speed rotating tool. Numerical simulation was utilized to relate the effect of temperature with the main field variables distribution in th…

Incremental forming aluminum alloys FEM
researchProduct

A novel linear friction welding based approach for sheet-bulk joining

2019

In the last decades, the development of new, flexible manufacturing processes caused the increase of the demands for highly customized complex functional parts in many industrial fields. The peculiar design of these components often overcome conventional sheet metal and bulk metal forming processes capabilities. In order to face this issue, new hybrid techniques, capable of exploit key advantages of different processes, have to be developed. In this paper, a novel approach based on the Linear Friction Welding process is proposed to obtain sheet-bulk joints. The feasibility of the technique on high specific strength alloys is investigated through an experimental campaign.In the last decades,…

aluminum alloysMetal formingExploitProcess (engineering)Computer scienceMechanical engineeringSpecific strengthvisual_artFace (geometry)visual_art.visual_art_mediumKey (cryptography)Friction weldingSheet metalLinear friction weldingAIP Conference Proceedings
researchProduct